—
Analysis of Philippe Castera’s circuit.#
Reproducing the results of Philippe Castera’s thesis [Castera2015].
The circuit solved is the following (see figure 4.2.1 in [Castera2015]):
┌-------------------(L-L_p)------┐
│ ↑ │ │
│ u_c C L_p
R_b │ │ │
│ R_sg R_p(t)
│ │ │
┖--------------------------------┘
where:
\(C\) is the capacitance of the capacitor,
\(R_b\) is the resistance of the ballast resistor,
\(R_sg\) models the wires and sparkgap resistances,
\(R_p(t)\) is the time-varying resistance of the plasma,
\(L_p\) is the stray inductance related to the plasma channel and the wiring between the connection points of the voltage probe.
The plasma resistance is modeled here by following the Rompe-Weizel model:
\[R_p^{RW}(t) = \frac{k^{RW} l}{\left(\int_{-\infty}^t i_p^2(t) d t\right)^{\frac{1}{2}}},
\quad k^{RW}=\left(\frac{\frac{3}{2} k_B T_{e}+e \phi_I}{2 \mu_{e} e}\right)^{\frac{1}{2}}\]
Import the required libraries.#
import seaborn as sns
from tests.electric_circuit.test_castera_circuit import test_fig4_2_2, test_fig_4_3_1
sns.set_theme("poster")
Plot figure 4.2.2.#
test_fig4_2_2(plot=True)

Plot figure 4.3.1.#
test_fig_4_3_1(plot=True)

Total running time of the script: (0 minutes 0.393 seconds)