—
Plot thermodynamic and transport data vs. temperature for a plasma of H2, O2, N2, Ar, He in LTE.#
This example plots the thermodynamic and transport data of H2, O2, N2, Ar, and He as a function of temperature.
References data#
Import the required libraries.#
import matplotlib.pyplot as plt
import seaborn as sns
from rizer.io.thermo_transport_data_reader import ThermoTransportDataReader
# Set the style of the plots.
sns.set_theme("talk")
Load reference data.#
data_H2_Boulos2023 = ThermoTransportDataReader(
gas_name="H2", pressure_atm=1, source="Boulos2023"
)
data_N2_Boulos2023 = ThermoTransportDataReader(
gas_name="N2", pressure_atm=1, source="Boulos2023"
)
data_O2_Boulos2023 = ThermoTransportDataReader(
gas_name="O2", pressure_atm=1, source="Boulos2023"
)
data_Ar_Boulos2023 = ThermoTransportDataReader(
gas_name="Ar", pressure_atm=1, source="Boulos2023"
)
data_He_Boulos2023 = ThermoTransportDataReader(
gas_name="He", pressure_atm=1, source="Boulos2023"
)
datas = [
data_H2_Boulos2023,
data_N2_Boulos2023,
data_O2_Boulos2023,
data_Ar_Boulos2023,
data_He_Boulos2023,
]
# Plot options for all the plots.
plot_options = [
{"ls": "-", "lw": 4, "color": "black", "label": r"$\mathregular{H_2}$"},
{"ls": "-", "lw": 3, "color": "red", "label": r"$\mathregular{N_2}$"},
{"ls": "-", "lw": 2, "color": "blue", "label": r"$\mathregular{O_2}$"},
{"ls": "-", "lw": 3, "color": "green", "label": r"$\mathregular{Ar}$"},
{"ls": "-", "lw": 3, "color": "orange", "label": r"$\mathregular{He}$"},
]
Plot all physical properties vs. temperature.#
physical_properties = ["rho", "cp", "h", "kappa", "sigma", "mu"]
for physical_property in physical_properties:
fig, ax = plt.subplots(figsize=(12, 8), layout="constrained")
for data, options in zip(datas, plot_options):
data.plot(
x="T",
y=physical_property,
fig_ax=(fig, ax),
show=False,
yscale="log" if physical_property in ["rho", "h", "sigma"] else "linear",
ax_title="1 atm, LTE, Boulos2023",
**options, # type: ignore
)
ax.legend()
plt.show()
Total running time of the script: (0 minutes 1.230 seconds)
![Mass density $\mathregular{[kg.m^{-3}]}$ vs. Temperature $\mathregular{[K]}$, 1 atm, LTE, Boulos2023](../../_images/sphx_glr_plot_Boulos2023_transport_data_in_LTE_001.png)
![Heat capacity at constant pressure $\mathregular{[J.kg^{-1}.K^{-1}]}$ vs. Temperature $\mathregular{[K]}$, 1 atm, LTE, Boulos2023](../../_images/sphx_glr_plot_Boulos2023_transport_data_in_LTE_002.png)
![Mass enthalpy $\mathregular{[J.kg^{-1}]}$ vs. Temperature $\mathregular{[K]}$, 1 atm, LTE, Boulos2023](../../_images/sphx_glr_plot_Boulos2023_transport_data_in_LTE_003.png)
![Thermal conductivity $\mathregular{[W.m^{-1}.K^{-1}]}$ vs. Temperature $\mathregular{[K]}$, 1 atm, LTE, Boulos2023](../../_images/sphx_glr_plot_Boulos2023_transport_data_in_LTE_004.png)
![Electrical conductivity $\mathregular{[S.m^{-1}]}$ vs. Temperature $\mathregular{[K]}$, 1 atm, LTE, Boulos2023](../../_images/sphx_glr_plot_Boulos2023_transport_data_in_LTE_005.png)
![Dynamic viscosity $\mathregular{[Pa.s]}$ vs. Temperature $\mathregular{[K]}$, 1 atm, LTE, Boulos2023](../../_images/sphx_glr_plot_Boulos2023_transport_data_in_LTE_006.png)