Plot thermo data vs. temperature for a plasma of H2, O2 or N2 in LTE.#

This example plots the thermo data of H2, O2 and N2 as a function of temperature.

The data for mass enthalpy, density, and heat capacity are compared to reference data from the literature.

References data#

The reference data for the mass enthalpy, density, and heat capacity at 1 atm are taken from:

Tags: thermo hydrogen H2 O2 N2 plasma thermal conductivity electrical conductivity viscosity

Import the required libraries.#

import matplotlib.pyplot as plt
import seaborn as sns

from rizer.io.thermo_transport_data_reader import ThermoTransportDataReader

# Set the style of the plots.
sns.set_theme("talk")

Load reference data.#

data_H2_Boulos2023 = ThermoTransportDataReader(
    gas_name="H2", pressure_atm=1, source="Boulos2023"
)
data_N2_Boulos2023 = ThermoTransportDataReader(
    gas_name="N2", pressure_atm=1, source="Boulos2023"
)
data_O2_Boulos2023 = ThermoTransportDataReader(
    gas_name="O2", pressure_atm=1, source="Boulos2023"
)

Plot the mass enthalpy vs. temperature.#

fig, ax = data_H2_Boulos2023.plot(
    x="T",
    y="h",
    show=False,
    label=r"$\mathregular{H_2}$",
    ls="-",
    lw=4,
    color="black",
)
data_N2_Boulos2023.plot(
    x="T",
    y="h",
    fig_ax=(fig, ax),
    show=False,
    label=r"$\mathregular{N_2}$",
    ls="--",
    lw=3,
    color="red",
)
data_O2_Boulos2023.plot(
    x="T",
    y="h",
    fig_ax=(fig, ax),
    show=False,
    label=r"$\mathregular{O_2}$",
    ls=":",
    lw=3,
    color="blue",
)
ax.set_yscale("log")
ax.legend()

plt.show()
Mass enthalpy $\mathregular{[J.kg^{-1}]}$ vs. Temperature $\mathregular{[K]}$, Gas: O2, pressure: 1 atm, Source: Boulos2023

Plot the density vs. temperature.#

fig, ax = data_H2_Boulos2023.plot(
    x="T",
    y="rho",
    show=False,
    label=r"$\mathregular{H_2}$",
    ls="-",
    lw=4,
    color="black",
)
data_N2_Boulos2023.plot(
    x="T",
    y="rho",
    fig_ax=(fig, ax),
    show=False,
    label=r"$\mathregular{N_2}$",
    ls="--",
    lw=3,
    color="red",
)
data_O2_Boulos2023.plot(
    x="T",
    y="rho",
    fig_ax=(fig, ax),
    show=False,
    label=r"$\mathregular{O_2}$",
    ls=":",
    lw=3,
    color="blue",
)
ax.set_yscale("log")
ax.legend()

plt.show()
Mass density $\mathregular{[kg.m^{-3}]}$ vs. Temperature $\mathregular{[K]}$, Gas: O2, pressure: 1 atm, Source: Boulos2023

Plot the heat capacity vs. temperature.#

fig, ax = data_H2_Boulos2023.plot(
    x="T",
    y="cp",
    show=False,
    label=r"$\mathregular{H_2}$",
    ls="-",
    lw=4,
    color="black",
)
data_N2_Boulos2023.plot(
    x="T",
    y="cp",
    fig_ax=(fig, ax),
    show=False,
    label=r"$\mathregular{N_2}$",
    ls="--",
    lw=3,
    color="red",
)
data_O2_Boulos2023.plot(
    x="T",
    y="cp",
    fig_ax=(fig, ax),
    show=False,
    label=r"$\mathregular{O_2}$",
    ls=":",
    lw=3,
    color="blue",
)
ax.set_yscale("log")
ax.legend()

plt.show()
Heat capacity at constant pressure $\mathregular{[J.kg^{-1}.K^{-1}]}$ vs. Temperature $\mathregular{[K]}$, Gas: O2, pressure: 1 atm, Source: Boulos2023

Total running time of the script: (0 minutes 0.745 seconds)